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Abstract. We compare semiclassical and quantum mechanical (numerical) results for 
spectral statistics in the transition from order to chaos in the corresponding classical system. 
Scale invariant two-dimensional Hamiltonians are discussed and significant discrepancies 
are found only for level spacings smaller than one average spacing. For the semiclassical 
limit we use the result of Berry and Robnik for the nearest-neighbour spacing distribution 
and the extension of it to the A3 statistic. 

1. Introduction 

During the last few years the implication of classical chaotic behaviour for the 
fluctuations of quantum spectra have been investigated from several points of view. 
Starting from early work (Berry and Tabor 1977, Berry 1983) there is increasing 
numerical evidence that strongly chaotic behaviour of the classical motion implies the 
spectral statistics of the Gaussian orthogonal ensemble (GOE) (Bohigas er a1 1984, 
Seligman er a1 1984), while ordered behaviour is associated with a random sequence 
of levels (the Poisson limit). The interpretation of the latter case is not completely 
unambiguous and  requires further investigation (Seligman, Verbaarschot and  Zirnbauer 
1985 (henceforth referred to as svz), Casati and  C'hirikov 1984). Lately the transition 
between the two regions has received a considerable amount of attention. The numerical 
analysis of spectra in the transition region between order and chaos has been carried 
out by several groups (Haller er al 1984, Hirooka er al 1984, svz). Berry and  Robnik 
(1984) have argued that in the semiclassical limit the eigenfunctions are localised in 
the ordered region of phase space or in one of the chaotic regions. In this limit they 
derived a closed formula for the nearest-neighbour spacing distribution. 

In this paper we first review the argument of Berry and Robnik (1984) and show 
that the semiclassical limit of other spectral statistics such as the number variance and  
the A3 statistic (Brody et a1 1982) can readily be obtained following the same line of 
reasoning. Some problems of both a conceptual and a practical nature that may appear 
in this approach are discussed. We compare the semiclassical formulae with numerical 
results obtained elsewhere (svz). A discrepancy shows up  for small level spacings. 
This was anticipated in previous work by Meyer er al (1984). 
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2. The semiclassical limit 

We consider a two-dimensional chaotic system whose trajectories in phase space are 
characterised by ordered regions of total volume pl and k disconnected chaotic regions 
of volumes p,, i = 2, . . . , k. Berry and Robnik (1984) argued that in the semiclassical 
limit the eigenstates of the system are localised within one of these regions. (In talking 
about phase space we may visualise these states in terms of their Wigner functions). 
When this assumption holds the spectra for different chaotic regions have to be 
superposed independently. For the ordered regions we expect a random spectrum and 
for the chaotic regions we expect a spectrum with GOE fluctuations. The average level 
density of each sequence is taken to be a constant proportional to the corresponding 
phase space fraction. Based on these assumptions Berry and  Robnik (1984) evaluated 
the nearest-neighbour spacing distribution P( S) and obtained 

where p,  is the fraction of phase space volume corresponding to region i and S is the 
level spacing in units of the average spacing. Under the same assumptions we can 
obtain similar results for other quantities. For example the number variance Z 2 ( L )  
(i.e. the average variance of the number of states in an interval containing on average 
L levels) is additive (see also Pandey 1979). As a consequence we find 

where X; and ELOE are the Poisson and the GOE values for the number variance, 
respectively (see Brody et a1 1982). Another statistic that essentially measures the 
stiffness of the spectrum is the A) statistic. In order to obtain it we have to normalise 
the spectrum by the local average level spacing d ( E )  (i.e. the sequence {El} is 
transformed in the sequence { E : }  by E:+,  = E : + [ ( E , + ,  - El)/d(El)]. For the levels E :  
in the interval [a ,  01 + L ]  A3 is defined by 

A 3 ( q  L )  = L-’ min 
A, B 

dx(  N ( x )  - (AX - B ) ) 2  (2.3) 

where N(x)  is the integrated level density. ( N ( x )  is a staircase function jumping by 
one at each of the levels E:.)  The minimalisation is over the parameters A and B. In 
this paper we use the ensemble average of h,(a, L )  and denote it by i 3 ( L ) .  The 
argument 01 is omitted in i , ( L )  because this average does not depend on cy. In the 
numerical calculations we do not have a statistical ensemble at our disposition and 
average instead the A3(a,  L )  over the spectrum. Also this quantity is denoted by z3( L) .  
It has the advantage over the number variance that its variance is highly suppressed. 
This follows from the fact that it can be expressed as an  average over the product of 
the number variance and a smooth function (Bohigas and Giannoni 1984) 

A3( L )  = - d r (  L3 - 2L2r + r3)X2(  r ) .  (2.4) 
;4 loL 

Therefore A, is also additive and we have 
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where the subscripts have to be interpreted as in (2.2). Note that the argument L of 
i3( L )  is equal to the average number of levels in a given interval, whereas the argument 
S of P ( S )  is the spacing between two neighbouring levels measured in units of the 
average level spacing. As a consequence S and L have a different physical meaning 
( L  is an average quantity whereas S is a ‘stochastic variable’). 

In  practice the evaluation of (2.1) and (2.5) has the problem that in two dimensions 
there may be many (usually infinitely many) different chaotic regions each of them 
occupying only a very small fraction p, of phase space. It may be very difficult to 
discriminate them from the regular orbits. Since the level density of each sequence of 
levels is proportional to p,, the semiclassical result for i3( L )  will not change when we 
add the chaotic regions with p, < 1 / L  to the regular region p,. A similar result for 
the nearest-neighbour spacing distribution was found by Berry and  Robnik (1984). 
They concluded that one has to distinguish the small chaotic regions from the regular 
ones only for large values of the level spacing. As an illustration of the aforementioned 
discussion and  as a check of the consistency of (2.5) we consider the limit of an infinite 
number of  chaotic regions with equal volumes. The value of h3(L) is given by 

thereby reproducing the Poisson limit. Here, and in the calculations of 5 3 we have 
used the exact result for i3GOE (see Bohigas and Giannoni 1984). 

3. Comparison of numerical results and semiclassical formulae 

In this section we discuss to what extent the semiclassical formulae agree with the 
numerical results available for the low lying part of the spectrum. As the semiclassical 
formulae depend sensitively on details of the structure of the classical orbits Berry 
and Robnik (1984) stressed the importance of using scale invariant systems. Otherwise 
the energy dependence of the classical motion will not allow a significant comparison. 

The particular Hamiltonian we investigate is given by 

H = +P: ++P: + a,x;+ a2x4 - a, ,(x,  - x ? ) ~ ,  (3.1) 

with a ,  = 50/(0.8J4, a, = 50/(1.2)4 and a , ,  = 1.5 or a , ,  = 2.0. The computation of the 
fractions of phase space covered by each of the chaotic regions is generally quite 
tedious. We use a Monte Carlo method. One hundred initial conditions are generated 
randomly according to the measure 6 ( E  - H) dx, dx, dp, dp,. For each of these we 
compute the Lyapunov exponent following a method given by Benettin and Strelcyn 
(1974). In figure 1 we show a histogram of 100 exponents for the potential with 
a,> = 1.5. In this way we obtain a rough idea of which initial conditions belong to the 
same chaotic region. Two problems make this estimate insufficient. In the first place, 
several chaotic regions may have the same exponent and in the second place the 
computer time required for an accurate determination of the exponents is extremely 
long. Aside from the ordered region in figure 1 we can distinguish two disordered 
regions associated with the two peaks. The corresponding fractions of phase space 
are p: = 0.16 (4),  p; = 0.46 (7) and p: = 0.38 (6),  respectively (we have given the error 
in the last digit in brackets). We use the upper index x of p: ( x  = a, b, c )  to distinguish 
between the different ways the volumes have been obtained. In order to deal with the 
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Figure 1. A histogram of the Lyapunov exponents .I for the Hamiltonian given in ( 7 . 1  J 

with a , ,  = 1.5. The bin size is equal to 0.005. From the figure we can derive an ordered 
region of phase space with volume fraction equal to 0.16 and two chaotic regions with 
fractions equal to 0.46 and 0.38. 

problems mentioned above we have also made a PoincarC section for each of the initial 
conditions generated randomly. Using running times for the integration of the Hamilton 
equations that are large enough to give rise to several hundreds of section points we 
find in addition to the ordered region with volume p:  = pf = 0.16 (4) three different 
chaotic regions. Their volumes have the values: p i  = 0.48 ( 7 ) ,  p! = 0.14 (4)  and p: = 
0.22 (5). Increasing the running time for the PoincarC section by a factor of ten we 
find diffusion between the regions 2 and 3 but no diffusion to region 4 so that regions 
2 and  3 merge into a new region 2. Now the fractions read as p.C = 0.16 (4),  pLs = 0.62 (8) 
and p :  =0.22 (5). We feel confident that this slow diffusion is not an  artefact due to 
numerical inaccuracy. 

Clearly the first method for calculating the chaotic volumes is less reliable but 
much more convenient because it does not involve any inspection of PoincarC sections. 

In the last part of this section we compare the statistics obtained from an exact 
quantum mechanical calculation and their semiclassical limits with parameters as given 
above. The first 500 eigenvalues of the Schrodinger equation corresponding to the 
Hamiltonian equation (3.1) with a ,2  = 1.5 have been calculated using methods described 
in svz. The results for the nearest-neighbour spacing distribution P (  S) (histogram) 
and the &,(L)  (dots) are plotted in figure 2. The dotted, full and  broken curves 
respectively show the results of using the semiclassical formulae with the fractions pLf, 
pp and pf, respectively. We first discuss the nearest-neighbour spacing distribution. 
At small S we find that none of the fractions gives adequate agreement. At larger 
values of S p:  gives the best agreement but pp and pr are still fairly close. For the 
a, which mainly measures correlations for L >  1 the agreement obtained with p:  for 
L <  10 is excellent but also pf  and p:  d o  not deviate much. The deviations at large 
L are already present in the integrable case. As we d o  not include them in the Poisson 
part of a, they can not be adjusted here. Treating all chaotic regions as a single one 
results in much larger deviations. Similar results have been found for a,,=2.0. The 
naive method of using Lyapunov exponents yields for the chaotic volumina p2 = 0.46 (7 )  
and p3 = 0.45 ( 7 ) ,  while the volume of the ordered regions is found to be equal to 
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Figure 2. The statistic ( 0 )  and the nearest-neighbour spacing distribution P ( S )  ( b )  for 
the Hamiltonian given in (3.1) with a , >  = 1.5 .  The dots and the histogram have been 
obtained from an exact quantum mechanical calculation. The semiclassical results are 
depicted by the full  curves, the dotted curves and the broken curves. They correspond to 
the partitionings of phase space (0.16, 0.48, 0.14, 0.221, (0.16, 0.46, 0.38) and (0.16, 0.62, 
0.22), respectively. The first number in each sequence is the ordered fraction. 

0.09 (3). Except for small values of S in the nearest-neighbour spacing distribution 
we find good agreement as is shown in figure 3. 

Incidentally we want to remark that for L < 50 the i3( L )  functions given by ( 2 . 5 )  
can very well be fitted by the i3 obtained from the random matrix model proposed in 
svz. This is not true for the short range part of the nearest-neighbour spacing distribu- 
tion given by (2.1). 

We can conclude that the agreement between the semiclassical formula for the 
nearest-neighbour spacing distributbn and the quantum mechanical results for low- 
lying states deteriorates as S decreases. While this is not surprising, the good agreement 
for spacings greater than one mean level spacing is more of a surprise. Another 
unexpected result is that the agreement for the A3(L) for L <  10.0 obtained with the 
fractioning p: is slightly worse than the agreement obtained with p:. (As already 
remarked above for larger values of L we cannot expect the semiclassical results to 
be correct.) However, this can easily be understood by realising that there is a big 
difference in time scales. At low energies the coupling between the regions that show 
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Figure 3. The i3 statistic ( a )  and the nearest-neighbour spacing distribution ( b )  for the 
Hamiltonian given in (3.1) with a,, = 2.0. The dots and the histogram correspond to the 
exact quantum mechanical calculation. The semiclassical results given by the full  line have 
been calculated with the partitioning (0.09, 0.45, 0.46) that has been obtained from an 
analysis of the distribution of the Lyapunov exponents. The first number in the sequence 
is the ordered volume fraction of phase space. 

a long time diffusion becomes small and levels corresponding to the two different parts 
of the chaotic region will show only a weak level repulsion. This is not true at larger 
energies. Thus setting small diffusion coefficients equal to zero will give us a better 
approximation at low energies. Another improvement for the &, might be obtained 
by including the ‘kink’ (i.e. the additional stiffness at large L seen in the integrable 
system (svz and Casati and  Chirkov 1984) in the ordered part of h3. 

Our present results complete those of Meyer er a1 (1984) who investigated a different 
two-dimensional system. These authors find that the parameters obtained by fitting 
the semiclassical formula for the nearest-neighbour spacing distribution (equation 
(2.1)) to the exact quantum mechanical results are in good agreement with those 
obtained from the classical equations of motion. Concerning their conclusions we 
want to make the following remarks. 

(1) The bin size of 0.33 they choose to construct the histogram that displays their 
numerical results is too large to notice the discrepancies we found. This is particularly 
obvious once it is realised that quantum effects are most likely to show up  for small 
values of the arguments of the spectral statistics. 
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( 2 )  The system is not scaling and the classical properties are likely to change in 
the energy interval considered. 

(3) The bin size may affect the values of the parameters which are obtained by 
fitting (2.1) to the exact quantum mechanical results. Indeed, the good agreement for 
large values of S is lost and  no satisfactory agreement for small values of S is achieved 
for a smaller bin size. 

To illustrate remarks (1) and (3) we tried to fit the results for P ( S )  by one chaotic 
region of varying size. The quantum mechanical results and the semiclassical formula 
are shown in figure 4 for chaotic fractions p2 = 0.5, p2 = 0.7 and  p2 = 0.9. For a value 
of p2 = 0.7 we would obtain a fit that looks acceptable at  a bin size of 0.33. Yet at the 
present bin size it clearly shows insufficient repulsion for small values of S. Incidentally, 
the real value of the chaotic volume is 0.9. Note that fractioning of the chaotic region 
will always reduce the repulsion. At this point we want to mention the problem of 
comparing histograms to continuous curves. To improve the statistics one can increase 
the bin size but a point of diminishing returns will be reached soon because one only 
studies the average of a continuous function over an  interval equal to the bin size. 

8 

Figure 4. The exact quantum mechanical nearest-neighbour spacing distribution (his- 
togram) for the Hamiltonian given in (3.1) with a,,=2.0. The full curves have been 
obtained from the semiclassical formula of Berry and Robnik (1984) with only one chaotic 
region. These curves which reach the value 0.75, 0.51 and 0.19 for S = 0.0 correspond to 
the chaotic volume fractions 0.5, 0.7 and 0.9, respectively. The last number has been 
obtained from an analysis of the classical equations of motion. 

4. Conclusions 

The semiclassical result of Berry and Robnik (1984) for the nearest-neighbour spacing 
distribution can readily be extended to other quantities such as the number variance 
or the A3 statistic. The question of these authors about how well the semiclassical 
formula represents the spectral statistics of the low-lying levels was investigated. 
Although we realise that our numerical evidence is limited we want to draw the 
following conclusions. At spacings less than one average level spacing the quantum 
effects produce quite a different nearest-neighbour spacing distribution. For larger 
values of S this distribution is well represented. The agreement improves if weakly 
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connected chaotic regions are treated separately. The &3( L )  statistic is an  insensitive 
quantity for small values of its argument and  therefore does not feel the aforementioned 
quantum effects. For not too large values of L it is very well described by the 
semiclassical formula. The deviations occurring at large values of L are generic to the 
low-lying levels of two-dimensional systems and might be eliminated by including 
them in the A3 of the ordered part. The agreement between the quantum result and  
the semiclassical formula found by Meyer et a1 (1984) was shown to be insufficient to 
substantiate the validity of the semiclassical limit of the statistics for low-lying states. 
The results we found are in keeping with the fact that for low-lying states the transition 
from Poisson to GOE spectral statistics can be described by a one-parameter family of 
curves. In two dimensions the semiclassical laws generically depend on more than 
one parameter, so that extension of these to the low-lying part of the spectrum was 
not to be expected. On the other hand the agreement at intermediate spacings allows 
us to fix the free parameter in the universal transition. This could for example be the 
parameter of the random matrix model proposed by Zirnbauer and ourselves (Seligman 
et a1 1984 and svz). Finally the observation that different regions connected with very 
small coupling act as if they were separate in the quantum limit, is of great interest 
for higher dimensions. In the presence of Arnold diffusion we expect only one chaotic 
region. On the other hand the diffusion coefficients between certain regions may be 
very small and  the effect on the fluctuationq of the low-lying part of the spectra is not 
immediately clear. However, the basic argument tells us that in this case only one 
chaotic region exists. Therefore, in the semiclassical limit the eigenvalue fluctuations 
during the transition between order and chaos depend only on the fraction of the total 
volume of phase space that is chaotic. As a function of this parameter we obtain a 
universal transition law given by the semiclassical formulae. 
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